The Problem of Image Recovery by the Metric Projections in Banach Spaces

نویسندگان

  • Yasunori Kimura
  • Kazuhide Nakajo
چکیده

and Applied Analysis 3 Lemma 3. Let p > 1 and E be a p-uniformly convex and smooth Banach space. Then, for each x, y ∈ E, φ p (x, y) ≥ c 0 󵄩󵄩󵄩󵄩x − y 󵄩󵄩󵄩󵄩 p (8) holds, where c 0 is maximum in Remark 2. Proof. Let x, y ∈ E. By Theorem 1, we have ‖x‖ p ≥ 󵄩󵄩󵄩󵄩y 󵄩󵄩󵄩󵄩 p + p⟨x − y, J p y⟩ + c 0 󵄩󵄩󵄩󵄩x − y 󵄩󵄩󵄩󵄩 p , (9) where c 0 is maximum in Remark 2. Hence, we get φ p (x, y) = ‖x‖ p − 󵄩󵄩󵄩󵄩y 󵄩󵄩󵄩󵄩 p − p⟨x − y, J p y⟩ ≥ c 0 󵄩󵄩󵄩󵄩x − y 󵄩󵄩󵄩󵄩 p , (10) which is the desired result. Let C be a nonempty closed convex subset of a strictly convex and reflexive Banach space E, and let x ∈ E. Then, there exists a unique element x 0 ∈ C such that ‖x 0 − x‖ = inf y∈C ‖y − x‖. Putting x 0 = P C x, we call P C the metric projection ontoC (see [24]).We have the following result [25, p. 196] for the metric projection. Lemma 4. Let C be a nonempty closed convex subset of a strictly convex, reflexive, and smooth Banach space E, and let x ∈ E. Then, y = P C x if and only if ⟨y − z, J 2 (x − y)⟩ ≥ 0 for all z ∈ C, where P C is the metric projection onto C. Remark 5. For p > 1, it holds that ‖x‖J p x = ‖x‖ p−1 J 2 x for every x ∈ E. Therefore, under the same assumption as Lemma 4, we have that y = P C x if and only if ⟨y − z, J p (x − y)⟩ ≥ 0 for all z ∈ C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications

In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the  assumption of normality we establish common fixed point theorems for the generalized quasi-contractions  with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$  in the set...

متن کامل

On Best Proximity Points in metric and Banach spaces

Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...

متن کامل

The Banach Type Contraction for Mappings on Algebraic Cone Metric Spaces Associated with An Algebraic Distance and Endowed with a Graph

In this work, we define the notion of an algebraic distance in algebraic cone metric spaces defined by Niknam et al. [A. Niknam, S. Shamsi Gamchi and M. Janfada, Some results on TVS-cone normed spaces and algebraic cone metric spaces, Iranian J. Math. Sci. Infor. 9 (1) (2014), 71--80] and introduce some its elementary properties. Then we prove the existence and uniqueness of fixed point for a B...

متن کامل

Existence and uniqueness of solutions for a periodic boundary value problem

In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.

متن کامل

On some open problems in cone metric space over Banach algebra

In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...

متن کامل

Indicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps

In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014